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The idea

Trivial observation: if a1, ..., an are real numbers such that

n∑
i=1

ai > 0,

then there exists j with aj > 0.

It will be more convenient for us to write not a sum but average:

1

n

n∑
i=1

ai > 0 =⇒ ∃aj > 0.

Analogously,

1

n

n∑
i=1

ai 6 0 =⇒ ∃aj 6 0.

Further,

1

n

n∑
i=1

ai > C ⇐⇒
1

n

n∑
i=1

(ai − C) > 0 =⇒ ∃aj > C

(all the same with 6, > or<).

We can just take C = 1
n

∑n
i=1 ai.
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The �rst moment method

Theorem (The �rst moment method)

Let Ea := 1
n

∑n
i=1 ai. Then there exist ai > Ea and aj 6 Ea. The same is true with

6, >,< instead of >.

It is the most simple (but very useful) variant of probabilistic method.
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Example 1: About pigeons

The pigeonhole principle:

Let n+ 1 rabbits be in n boxes (pigeons in holes). Then what?

Then some hole contains at least two pigeons.

Let j denote the number of a hole and aj be the number of pigeons there. Then

1

n

n∑
j=1

aj = Eaj =
n+ 1

n
= 1 + 1/n

and there exists j with aj > 1 + 1/n. Since aj are integers, we can �nd aj > 2.

More generally, if there are m pigeons in n holes, then

Eaj =
m

n

and there exist ai 6
⌊
m
n

⌋
and aj >

⌈
m
n

⌉
.
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Example 2: Unit vectors

Suppose that v1, ..., vn are vectors in a Hilbert space with ‖vj‖ = (vj , vj)
1/2 = 1.

Then there exist numbers εj ∈ {±1} such that

‖ε1v1 + ...+ εnvn‖ > n1/2.

(the same true for 6 n1/2).

(Note that these bounds cannot be improved: in the case when {vj} is an orthogonal

system, we have ‖ε1v1 + ...+ εnvn‖ = n1/2 for any choice of signs {εj}.)

Proof. Let us consider all possible 2n n-tuples (ε1, ..., εn). We have

E‖
∑
i

εivi‖2 = 2−n
∑

ε1,...,εn

∑
i

εivi,
∑
j

εjvj

 =
∑
i,j

(vi, vj)2
−n

∑
ε1,...,εn

εiεj .

The inner sum (with �xed i, j) is equal to δij (the Kronecker symbol); then

E‖
∑
i

εivi‖2 =
n∑
i=1

(vi, vi) = n

and the claim follows.
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Example 3: Large gaps between primes

There are arbitrary long strings of consecutive positive integers with no primes: for
n > 2, the string n! + 2, ..., n! + n gives us such an example. It is interesting to obtain
a quantitative analog of this statement. De�ne

G(X) := max
pn+16X

(pn+1 − pn).

The largest n with n! + n = exp(n logn(1 + o(1)) 6 X is of order logX
log logX

; so the

above example gives us G(X)� logX
log logX

.

But this is worse than a trivial bound! Since π(X) = X
logX

(1 + o(1)), we have

E(pn+1 − pn) =
1

π(X)

∑
pn+16X

(pn+1 − pn) =
pn+1 − 2

π(X)
� logX

and therefore G(X)� logX. On the other hand, it is not constructive; but in fact we
can easily improve the previous construction to get the same bound.

Note that for X =
∏
q6p q all numbers X + 2, ..., X + p are composite and

X = exp((1 + o(1))p); hence G(X)� logX.
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Example 3: Large gaps between primes: want larger!

In fact, using the Chinese Remainder Theorem (and being much more clever � some
information about smooth numbers and some variants of sieve methods are needed) it
is possible prove the following.

Theorem (Erd�os-Rankin, 1938; "deterministic construction")

We have

G(X)� logX
log2X log4X

(log3X)2
.

Erd�os suggested 10000$ for anyone who can prove that

G(X)� f(X) logX
log2X log4X

(log3X)2

for some function f(X)→∞ as X →∞.

Theorem (Ford, Green, Konyagin, Maynard, Tao, 2018; "deterministic-probabilistic
construction")

We have

G(X)� logX
log2X log4X

log3 X
.
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Example 4: Large Kloosterman's sums

Let q be a prime and (ab, q) = 1. De�ne

Sq(a, b) =

q−1∑
x=1

exp

(
2πi

q
(ax∗ + bx)

)
,

where eq(u) = exp
(

2πiu
q

)
and x∗x ≡ 1 (mod q). Upper estimates of such sums are

crucial for �nding the asymptotics for the number of solutions of the equation

x2
1 + x2

2 + x2
3 + x2

4 = N.

The best possible result is due to A.Weil:

|Sq(a, b)| 6 2q1/2.

Here one cannot replace 2 by 2− ε. For now, we can easily show that one cannot
replace 2 by 1− ε: let a = 1 and b be chosen uniformly at random from 0, ..., q − 1 (in
fact, Sq(a, b) = Sq(1, ab) and we can assume a = 1 wlog). Then (in the last sum the
pairs (x, y) with x = y contribute only)

E|Sq(1, b)|2 =
1

q

q−1∑
b=0

|Sq(1, b)|2 =
1

q

q−1∑
b=0

q−1∑
x,y=1

eq(x
∗ − y∗ + bx− by) =

q−1∑
x,y=1

eq(x
∗ − y∗)

1

q

q−1∑
b=0

eq(b(x− y)) = q − 1.
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Example 4: Large Kloosterman's sums are popular!

Thus there exists b ∈ Zq such that |Sq(1, b)|2 > q − 1; it remains to note that
S(1, 0) = −1 and hence this b is not 0.

So, there are b ∈ Z∗q with |Sq(1, b)| >
√
q − 1.

How many b do we have with, say, |Sq(1, b)| > 0.5q1/2 ?

Turn to the so-called popularity principle:

Theorem (The popularity principle)

Suppose that ai 6M and set Ea := 1
n

∑n
i=1 ai. Then P(ai > 0.5Ea) > Ea

2M
.

Proof. Obviously,
1

n

∑
i:ai60.5Ea

ai 6 0.5Ea.

Hence,

1

n

∑
i:ai>0.5Ea

ai > 0.5Ea.

But since ai 6M

MP(ai > 0.5Ea) = M
1

n
#{i : ai > 0.5Ea} >

1

n

∑
i:ai>0.5Ea

ai > 0.5Ea.
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Example 4: Large Kloosterman's sums are popular!

Recall that (a great theorem)

|Sq(1, b)| 6 2q1/2;

so we have
|Sq(1, b)|2 6 4q =: M.

Also (and that is almost trivial and was shown by us)

E|Sq(1, b)|2 = q − 1.

Then by the popularity principle we have

P
(
|Sq(1, b)|2 > 0.5(q − 1)

)
>
q − 1

8q
.

Fix a large q. Then

P
(
|Sq(1, b)| >

√
0.5(q − 1)

)
>

1

8
−

1

8q
> 0.12.

So for a positive proportion of b we proved the inequality |Sq(1, b)| > 0.7q1/2 !

Large Kloosterman's sums are popular! (and we get it ¾for free¿!)
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Example 5: Two conferences

In fact, using the probabilistic method we can prove not only that a function takes
large values. We can prove that some objects do exist!

Toy problem.
Suppose there will be held two conferences on Analytic Number Theory
simultaneously with 60 (!) sections. Suppose also that for each section there are at
least 7 scientists who are specialists in the corresponding topics. Is it possible to
distribute them so that for both conferences all of its sections will not be empty?

Yes!
Let us assign a scientist to each conference with probability 1/2. Let EA be the event
that a section A of one of the conferences is empty. The probability of EA is at most
2−7; the probability of existence of an empty section is

P(∪AEA) 6
∑
A

P(EA) 6 2 · 60 · 2−7 = 120/128 < 1.

If there are n scientists, then we have 2n possibilities and hence there are at least
2n(1− 120/128) = 2n−4 rearrangements of participants with no empty sections.

Again, we proved not only the existence of such rearrangement: we proved that there
are many of them.
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Example 5: Two conferences

Once again, the method is instructive but not constructive. Usual people may not
understand this:

-Hey, could you help me? There will be held two conferences
simultaneously...(bla-bla-bla). Is it possible to distribute the scientists so that for both
conferences all of its sections would not be empty?

(here you are thinking, applying the probabilistic method...)

-Yes!
-Oh, nice!! How?
-I don't know.

It is one of the reasons why ¾we get everything for free¿.

Mikhail Gabdullin The probabilistic method



Example 5: Two conferences

Once again, the method is instructive but not constructive. Usual people may not
understand this:

-Hey, could you help me? There will be held two conferences
simultaneously...(bla-bla-bla). Is it possible to distribute the scientists so that for both
conferences all of its sections would not be empty?

(here you are thinking, applying the probabilistic method...)

-Yes!
-Oh, nice!! How?
-I don't know.

It is one of the reasons why ¾we get everything for free¿.

Mikhail Gabdullin The probabilistic method



Example 5: Two conferences

Once again, the method is instructive but not constructive. Usual people may not
understand this:

-Hey, could you help me? There will be held two conferences
simultaneously...(bla-bla-bla). Is it possible to distribute the scientists so that for both
conferences all of its sections would not be empty?

(here you are thinking, applying the probabilistic method...)

-Yes!
-Oh, nice!! How?
-I don't know.

It is one of the reasons why ¾we get everything for free¿.

Mikhail Gabdullin The probabilistic method



Example 6: Tournament

Another combinatorial toy problem.
Suppose a great football (or whatever) tournament with N = 107 teams is coming. Is
it possible that for any 10 teams there will be a team which would beat all of them
(draws are not allowed)?

Consider a random directed complete graph G = (V,E) with |V | = N vertices; (i, j)
means that the team i won the team j.

For any i 6= j we set P((i, j) ∈ E) = P((j, i) ∈ E) = 1/2. Fix A ⊂ V with |A| = 10
and take v ∈ V \A. The probability that (v, a) ∈ E for all a ∈ A (v is good for A) is
2−10; put α = 1− 2−10.
Let FA be the event that there are no good v (a bad event � our condition then
fails). Then P(FA) = αN−10 and

P(∪|A|=10FA) 6
∑
|A|=10

P(FA) 6
(N

10

)
α−10αN 6

(α−1N)10

10!
αN < 10−4000.

Again, we have proved that not one but the vast majority of the tournaments obeys
our condition. Nevertheless, we still have no examples from this argument.
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Example 6: Tournament

But that is quite strange, isn't it? Take 10 best chessplayers. What is the probability
that somebody beats all of them?

Ok, let us allow draws and consider the same problem.

For any i 6= j we set

P((i won j) ∈ E) = P((j won i) ∈ E) = P((j made a draw with i) ∈ E) = 1/3.

Fix A ⊂ V with |A| = 10 and take v ∈ V \A. The probability that (v, a) ∈ E for all
a ∈ A (v is good for A) is 3−10; put α = 1− 3−10.
Let FA be the event that there are no good v. Then P(FA) = αN−10 and

P(∪|A|=10FA) 6
∑
|A|=10

P(FA) 6
(N

10

)
α−10αN 6

(α−1N)10

10!
αN < 10−10.

How can one explain this?

Random objects, roughly speaking, have no structure. But usual tournaments do have
some structure - say, a group of strong players a group of weak players, or transitivity:
if a won b and b won c, then it is quite logical to assume that a won c. Usually have
more "dependences" in the life.

We will also show that scores of almost all players in this random tournament are very
close to N/2. It is also very unusual for the real life.

Mikhail Gabdullin The probabilistic method



Example 6: Tournament

But that is quite strange, isn't it? Take 10 best chessplayers. What is the probability
that somebody beats all of them?

Ok, let us allow draws and consider the same problem.

For any i 6= j we set

P((i won j) ∈ E) = P((j won i) ∈ E) = P((j made a draw with i) ∈ E) = 1/3.

Fix A ⊂ V with |A| = 10 and take v ∈ V \A. The probability that (v, a) ∈ E for all
a ∈ A (v is good for A) is 3−10; put α = 1− 3−10.
Let FA be the event that there are no good v. Then P(FA) = αN−10 and

P(∪|A|=10FA) 6
∑
|A|=10

P(FA) 6
(N

10

)
α−10αN 6

(α−1N)10

10!
αN < 10−10.

How can one explain this?

Random objects, roughly speaking, have no structure. But usual tournaments do have
some structure - say, a group of strong players a group of weak players, or transitivity:
if a won b and b won c, then it is quite logical to assume that a won c. Usually have
more "dependences" in the life.

We will also show that scores of almost all players in this random tournament are very
close to N/2. It is also very unusual for the real life.

Mikhail Gabdullin The probabilistic method



Example 6: Tournament

But that is quite strange, isn't it? Take 10 best chessplayers. What is the probability
that somebody beats all of them?

Ok, let us allow draws and consider the same problem.

For any i 6= j we set

P((i won j) ∈ E) = P((j won i) ∈ E) = P((j made a draw with i) ∈ E) = 1/3.

Fix A ⊂ V with |A| = 10 and take v ∈ V \A. The probability that (v, a) ∈ E for all
a ∈ A (v is good for A) is 3−10; put α = 1− 3−10.
Let FA be the event that there are no good v. Then P(FA) = αN−10 and

P(∪|A|=10FA) 6
∑
|A|=10

P(FA) 6
(N

10

)
α−10αN 6

(α−1N)10

10!
αN < 10−10.

How can one explain this?

Random objects, roughly speaking, have no structure. But usual tournaments do have
some structure - say, a group of strong players a group of weak players, or transitivity:
if a won b and b won c, then it is quite logical to assume that a won c. Usually have
more "dependences" in the life.

We will also show that scores of almost all players in this random tournament are very
close to N/2. It is also very unusual for the real life.

Mikhail Gabdullin The probabilistic method



Example 6: Tournament

But that is quite strange, isn't it? Take 10 best chessplayers. What is the probability
that somebody beats all of them?

Ok, let us allow draws and consider the same problem.

For any i 6= j we set

P((i won j) ∈ E) = P((j won i) ∈ E) = P((j made a draw with i) ∈ E) = 1/3.

Fix A ⊂ V with |A| = 10 and take v ∈ V \A. The probability that (v, a) ∈ E for all
a ∈ A (v is good for A) is 3−10; put α = 1− 3−10.
Let FA be the event that there are no good v. Then P(FA) = αN−10 and

P(∪|A|=10FA) 6
∑
|A|=10

P(FA) 6
(N

10

)
α−10αN 6

(α−1N)10

10!
αN < 10−10.

How can one explain this?

Random objects, roughly speaking, have no structure. But usual tournaments do have
some structure - say, a group of strong players a group of weak players, or transitivity:
if a won b and b won c, then it is quite logical to assume that a won c. Usually have
more "dependences" in the life.

We will also show that scores of almost all players in this random tournament are very
close to N/2. It is also very unusual for the real life.

Mikhail Gabdullin The probabilistic method



Example 6: Tournament

But that is quite strange, isn't it? Take 10 best chessplayers. What is the probability
that somebody beats all of them?

Ok, let us allow draws and consider the same problem.

For any i 6= j we set

P((i won j) ∈ E) = P((j won i) ∈ E) = P((j made a draw with i) ∈ E) = 1/3.

Fix A ⊂ V with |A| = 10 and take v ∈ V \A. The probability that (v, a) ∈ E for all
a ∈ A (v is good for A) is 3−10; put α = 1− 3−10.
Let FA be the event that there are no good v. Then P(FA) = αN−10 and

P(∪|A|=10FA) 6
∑
|A|=10

P(FA) 6
(N

10

)
α−10αN 6

(α−1N)10

10!
αN < 10−10.

How can one explain this?

Random objects, roughly speaking, have no structure. But usual tournaments do have
some structure - say, a group of strong players a group of weak players, or transitivity:
if a won b and b won c, then it is quite logical to assume that a won c. Usually have
more "dependences" in the life.

We will also show that scores of almost all players in this random tournament are very
close to N/2. It is also very unusual for the real life.

Mikhail Gabdullin The probabilistic method



Example 6: Tournament

But that is quite strange, isn't it? Take 10 best chessplayers. What is the probability
that somebody beats all of them?

Ok, let us allow draws and consider the same problem.

For any i 6= j we set

P((i won j) ∈ E) = P((j won i) ∈ E) = P((j made a draw with i) ∈ E) = 1/3.

Fix A ⊂ V with |A| = 10 and take v ∈ V \A. The probability that (v, a) ∈ E for all
a ∈ A (v is good for A) is 3−10; put α = 1− 3−10.
Let FA be the event that there are no good v. Then P(FA) = αN−10 and

P(∪|A|=10FA) 6
∑
|A|=10

P(FA) 6
(N

10

)
α−10αN 6

(α−1N)10

10!
αN < 10−10.

How can one explain this?

Random objects, roughly speaking, have no structure. But usual tournaments do have
some structure - say, a group of strong players a group of weak players, or transitivity:
if a won b and b won c, then it is quite logical to assume that a won c. Usually have
more "dependences" in the life.

We will also show that scores of almost all players in this random tournament are very
close to N/2. It is also very unusual for the real life.

Mikhail Gabdullin The probabilistic method



Example 6: Tournament

But that is quite strange, isn't it? Take 10 best chessplayers. What is the probability
that somebody beats all of them?

Ok, let us allow draws and consider the same problem.

For any i 6= j we set

P((i won j) ∈ E) = P((j won i) ∈ E) = P((j made a draw with i) ∈ E) = 1/3.

Fix A ⊂ V with |A| = 10 and take v ∈ V \A. The probability that (v, a) ∈ E for all
a ∈ A (v is good for A) is 3−10; put α = 1− 3−10.
Let FA be the event that there are no good v. Then P(FA) = αN−10 and

P(∪|A|=10FA) 6
∑
|A|=10

P(FA) 6
(N

10

)
α−10αN 6

(α−1N)10

10!
αN < 10−10.

How can one explain this?

Random objects, roughly speaking, have no structure. But usual tournaments do have
some structure - say, a group of strong players a group of weak players, or transitivity:
if a won b and b won c, then it is quite logical to assume that a won c. Usually have
more "dependences" in the life.

We will also show that scores of almost all players in this random tournament are very
close to N/2. It is also very unusual for the real life.

Mikhail Gabdullin The probabilistic method



Example 7: Sum-free subsets

A set A ⊂ Z is said to be sum-free if there are no solutions of the equation a+ b = c
with a, b, c ∈ A.

Obviously, the set of all odd numbers (or numbers which are congruent 1 (mod 3)) is
sum-free.

Given a �nite set A ⊂ Z, how large can we choose a sum-free subset B ⊂ A ?

Theorem (Erd�os, 1965)

Let A be a set of non-zero integers. Then A contains a sum-free subset B of size

|B| > |A|/3.

Proof. The main idea: the set [1/3, 2/3) is a sum-free subset of [0, 1) = R/Z.

Choose a large prime number p = 3k + 2 so that A ⊂ [−p/2, p/2] \ {0}. We can view
A as a subset of Zp rather than the integers Z, and observe that a subset B of A will
be sum-free in Zp if and only if it is sum-free in Z.
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Example 7: Sum-free subsets

Now, the set [k + 1, 2k + 1] ⊂ Zp is sum-free. Choose x ∈ Z∗p uniformly at random;
then the random set

B := A ∩ (x · [k + 1, 2k + 1]) = {a ∈ A : x−1a ∈ [k + 1, 2k + 1]}

is also sum-free. We want to �nd x such that |B| is large. We have

E(|B|) =
∑
a∈A

P(a ∈ B) =
∑
a∈A

P(x−1a ∈ [k + 1, 2k + 1]) = |A|
k + 1

p− 1
>
|A|
3
.

Then we are done.
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Example 8: Large L1-norms of polynomials

Consider trygonometric polynomials with coe�cients equal to 1 and the norms

‖f‖q :=
(∫ 1

0 |f(x)|qdx
)1/q

, q > 1. Suppose {nk}Nk=1 are distinct integers; then

trivially ∥∥∥∥∥
N∑
k=1

e(nkx)

∥∥∥∥∥
2

= N1/2

(here and in what follows e(mx) = e2πimx). On the other hand, by the
Cauchi-Schwarz inequality∥∥∥∥∥

N∑
k=1

e(nkx)

∥∥∥∥∥
1

6

∥∥∥∥∥
N∑
k=1

e(nkx)

∥∥∥∥∥
2

= N1/2.

A very natural question is how large
∥∥∥∑N

k=1 e(nkx)
∥∥∥

1
can be. We give a quite precise

answer using the �rst moment method again.
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Example 8: Large L1-norms of polynomials

Theorem

Let N be a positive integer and [N ] = {1, ..., N}. Then

#

M ⊆ [N ] :

1∫
0

∣∣∣∣∣∣
∑
k∈M

e(kx)

∣∣∣∣∣∣ dx > 0.14N1/2

 > 0.28 · 2N .

The same is true (possibly with worse constants) for the systems {cos 2πkx} and
{sin 2πkx}; the proof is almost the same.

Proof. We need a little preparation. Let f = {fl}ml=1 be arbitrary complex numbers;

for q > 0, de�ne ‖f‖q =
(

1
m

∑m
l=1 |fl|q

)1/q
.

Lemma

We have

‖f‖2 6 ‖f‖1/31 ‖f‖2/34 .

This lemma is a simple consequence of H�older's inequality (with the exponents 3/2
and 3): we have

‖f‖22 =
1

m

m∑
l=1

|fl|2/3|fl|4/3 6

(
1

m

m∑
l=1

|fl|
)2/3(

1

m

m∑
l=1

|fl|4
)1/3

= ‖f‖2/31 ‖f‖4/34 .
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Example 8: Large L1-norms of polynomials

Now let {ak}Nk=1 be arbitrary complex numbers and {εk}Nk=1 be independent random
signes (εk = ±1/2 with probability 1/2). Consider

Eε

∣∣∣∣∣
N∑
k=1

εkak

∣∣∣∣∣
2

= 2−N
∑

ε1,...,εN

∣∣∣∣∣
N∑
k=1

εkak

∣∣∣∣∣
2

=
∑
k,l

akalEεεkεl =
∑
k

|ak|2

and

Eε

∣∣∣∣∣
N∑
k=1

εkak

∣∣∣∣∣
4

= 2−N
∑

ε1,...,εN

∣∣∣∣∣
N∑
k=1

εkak

∣∣∣∣∣
4

=
∑

k,l,m,n

akalamanEεεkεlεmεn.

Here only 4-tuples of the types (k, k, k, k), (k, l, k, l), (k, k, l, l), (k, l, l, k) matter; other
tuples give a zero contribution to the RHS; so

Eε

∣∣∣∣∣
N∑
k=1

εkak

∣∣∣∣∣
4

=
∑
k

|ak|4 + 6
∑
k<l

|ak|2|al|2 6 3

(∑
k

|ak|2
)2

HenceEε

∣∣∣∣∣
N∑
k=1

εkak

∣∣∣∣∣
2
1/2

6

Eε

∣∣∣∣∣
N∑
k=1

εkak

∣∣∣∣∣
4
1/4

6 4
√

3

Eε

∣∣∣∣∣
N∑
k=1

εkak

∣∣∣∣∣
2
1/2

.
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Example 8: Large L1-norms of polynomials

In fact, there is more common Khinchin's inequality: for any p > 0 there are constants
Ap, Bp > 0 such that for any {ak},

Ap

(
Eε

∣∣∣∣∣
N∑
k=1

εkak

∣∣∣∣∣
p)1/p

6

Eε

∣∣∣∣∣
N∑
k=1

εkak

∣∣∣∣∣
2
1/2

6 Bp

(
Eε

∣∣∣∣∣
N∑
k=1

εkak

∣∣∣∣∣
p)1/p

.

Now �x x ∈ [0, 1]. We use the lemma with {ak} = e(kx) and f(ε) =
∑N
k=1 εke(kx)

as well as the bound for L4-norm of f(ε) to get

Eε

∣∣∣∣∣
N∑
k=1

εke(kx)

∣∣∣∣∣ = ‖f‖1 >
‖f‖32
‖f‖24

>
‖f‖2√

3
= (N/3)1/2.

Integrating this for x ∈ [0, 1] we obtain

Eε

1∫
0

∣∣∣∣∣
N∑
k=1

εke(kx)

∣∣∣∣∣ dx =

1∫
0

Eε

∣∣∣∣∣
N∑
k=1

εke(kx)

∣∣∣∣∣ dx = ‖f‖1 >
‖f‖32
‖f‖24

>
‖f‖2√

3
= (N/3)1/2.
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Example 8: Large L1-norms of polynomials are popular!

Note that for any {εk} ∈ {−1, 1}N the bound

1∫
0

∣∣∣∣∣
N∑
k=1

εke(kx)

∣∣∣∣∣ dx 6

 1∫
0

∣∣∣∣∣
N∑
k=1

εke(kx)

∣∣∣∣∣
2

dx

1/2

= N1/2 =: M

holds. Then the popularity principle gives us

Pε

 1∫
0

∣∣∣∣∣
N∑
k=1

εke(kx)

∣∣∣∣∣ dx >
N1/2

2
√

3

 >
Eε|f(ε)|

2M
>

1

2
√

3
.
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Example 8: Large L1-norms of polynomials are popular!

Fix any {εk}Nk=1 with
∫ 1
0

∣∣∣∑N
k=1 εke(kx)

∣∣∣ dx > N1/2

2
√

3
and denote

g(x) =
∑
k εke(kx). De�ne

g+ =
∑

k:εk=1

e(kx), g− =
∑

k:εk=−1

e(kx)

Then

‖g+ − g−‖1 = ‖g‖1 >
N1/2

2
√

3
> 0.288N1/2

and

‖g+ + g−‖1 =

∥∥∥∥∥
N∑
k=1

e(kx))

∥∥∥∥∥
1

=
4

π2
logN +O(1).

Hence,

‖g+‖1 =

∥∥∥∥g+ − g−

2
+
g+ + g−

2

∥∥∥∥
1

>

∥∥∥∥g+ − g−

2

∥∥∥∥
1

−
∥∥∥∥g+ + g−

2

∥∥∥∥
1

> 0.14N1/2

and analogously for g−.
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Example 8: Large L1-norms of polynomials are popular!

Note that the pairs {g+, g−} are the same for {εk} and {−εk}. Then we see that

#

M ⊆ [N ] :

1∫
0

∣∣∣∣∣∣
∑
k∈M

e(kx)

∣∣∣∣∣∣ dx > 0.14N1/2

 > 0.28 · 2N .

Thus for a positive proportion of subsets the correspoding polynomials have large
L1-norm.

Note the more "direct" argument with P(εk = 0) = P(εk = 1) = 1/2 does not work

(then L4-moments Eε
∣∣∣∑N

k=1 εke(kx)
∣∣∣4 would be of order N4 instead of N2).
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Example 9: Antichains

A collection A of sets is said to be an antichain if none of the sets is contained in any
other, that is, A * B for any distinct A,B ∈ A.

Now consider subsets of {1, ..., N}. What antichains do we have here?

Obviously, a collection all subsets of the same size k form an antichain. It has size( N
[N/2]

)
if k = [N/2]. In fact, this is the largest antichain.

Theorem (LYM inequality)

Let A be an antichain of subsets of [N ]. Then∑
A∈A

1( N
|A|
) 6 1.

Since
( N
|A|
)
6
( N
[N/2]

)
, it implies that

|A|( N
[N/2]

) 6
∑
A∈A

1( N
|A|
) 6 1

and |A| 6
( N
[N/2]

)
. The name of the inequality is due to works of Lubell, Meshalkin

and Yamamoto.
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Example 9: Antichains

Proof of the LYM inequality. We give a probabilistic proof using the method of
random maps. Let φ : [N ]→ [N ] be a random bijection chosen uniformly at random
among all N ! such bijections. Let A ⊆ [N ]. Then it is easy to see that

P (φ(A) = {1, ..., |A|}) =
|A|!(N − |A|)!

N !
=

1( N
|A|
) .

But if A,B ∈ A and A 6= B, then the events φ(A) = {1, ..., |A|} and
φ(B) = {1, ..., |B|} are disjoint. So∑

A∈A
P (φ(A) = {1, .., |A|}) = P (∪A∈A (φ(A) = {1, .., |A|})) 6 1

and the claim follows.
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among all N ! such bijections. Let A ⊆ [N ]. Then it is easy to see that

P (φ(A) = {1, ..., |A|}) =
|A|!(N − |A|)!

N !
=

1( N
|A|
) .

But if A,B ∈ A and A 6= B, then the events φ(A) = {1, ..., |A|} and
φ(B) = {1, ..., |B|} are disjoint. So∑

A∈A
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Example 10: Bipartite subgraphs

Theorem

Let G = (V,E) be a graph with n vertices and e edges. Then G contains a bipartite

subgraph with at least e/2 edges.

Proof. Let T ⊆ V be a random subset given by P(x ∈ T ) = 1/2, with these choices
mutually independent. Call an edge {x; y} ∈ E crossing if exactly one of x and y is in
T . It is easy to see that the subgraph formed by crossing edges is bipartite.

Let X be the number of crossing edges. We decompose

X =
∑

{x;y}∈E
Xxy ,

where Xxy is the indicator random variable for {x; y} being crossing. Then

EXxy = 1/2,

as two fair coin �ips have probability 1/2 of being di�erent. Hence

EX =
∑
{x;y}

EXxy = e/2

and X > e/2 for some choice of T as desired.
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The second moment method

Suppose that a = {ai}ni=1 be a �nite sequence of real numbers. Having de�ned the

expectation Ea = 1
n

∑n
i=1 ai, we want to get some information about how large the

deviation |ai − Ea| can be. Then it is logical to de�ne the variation

Var a := E |ai − Ea|2 = Ea2
i − 2E (aiEa) + (Ea)2 = Ea2 − E2a.

How to use variation?

Theorem (Markov's inequality)

Let X be a non-negative random variable. Then for any λ > 0

P(X > λ) 6
EX
λ
.

Proof.

EX =

∫
Ω

Xdµ >
∫

ω:X(ω)>λ

Xdµ >
∫

ω:X(ω)>λ

λdµ = λP(X > λ).

So X 6 10EX with probability at least 90%.
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The second moment method

Theorem (Chebyshev's inequality)

Let λ > 0. Then we have

P
(
|X − EX| > λVar1/2X

)
6

1

λ2
.

Proof. By Markov's inequality

P
(
|X − EX| > λVar1/2 X

)
= P

(
|X − EX|2 > λ2 VarX

)
6

E|X − EX|2

λ2 VarX
=

1

λ2
.

So X = EX +O(λVar1/2 X) with probability 1−O
(

1
λ2

)
.

The quantity σ := Var1/2X is called the standard deviation of X.

This works good when variation is small with respect to expectation.

Mikhail Gabdullin The probabilistic method



The second moment method

Theorem (Chebyshev's inequality)

Let λ > 0. Then we have

P
(
|X − EX| > λVar1/2X

)
6

1

λ2
.

Proof. By Markov's inequality

P
(
|X − EX| > λVar1/2 X

)
= P

(
|X − EX|2 > λ2 VarX

)
6

E|X − EX|2

λ2 VarX
=

1

λ2
.

So X = EX +O(λVar1/2 X) with probability 1−O
(

1
λ2

)
.

The quantity σ := Var1/2X is called the standard deviation of X.

This works good when variation is small with respect to expectation.

Mikhail Gabdullin The probabilistic method



The second moment method

Theorem (Chebyshev's inequality)

Let λ > 0. Then we have

P
(
|X − EX| > λVar1/2X

)
6

1

λ2
.

Proof. By Markov's inequality

P
(
|X − EX| > λVar1/2 X

)
= P

(
|X − EX|2 > λ2 VarX

)
6

E|X − EX|2

λ2 VarX
=

1

λ2
.

So X = EX +O(λVar1/2 X) with probability 1−O
(

1
λ2

)
.

The quantity σ := Var1/2X is called the standard deviation of X.

This works good when variation is small with respect to expectation.

Mikhail Gabdullin The probabilistic method



The second moment method

Theorem (Chebyshev's inequality)

Let λ > 0. Then we have

P
(
|X − EX| > λVar1/2X

)
6

1

λ2
.

Proof. By Markov's inequality

P
(
|X − EX| > λVar1/2 X

)
= P

(
|X − EX|2 > λ2 VarX

)
6

E|X − EX|2

λ2 VarX
=

1

λ2
.

So X = EX +O(λVar1/2 X) with probability 1−O
(

1
λ2

)
.

The quantity σ := Var1/2X is called the standard deviation of X.

This works good when variation is small with respect to expectation.

Mikhail Gabdullin The probabilistic method



The second moment method

Theorem (Chebyshev's inequality)

Let λ > 0. Then we have

P
(
|X − EX| > λVar1/2X

)
6

1

λ2
.

Proof. By Markov's inequality

P
(
|X − EX| > λVar1/2 X

)
= P

(
|X − EX|2 > λ2 VarX

)
6

E|X − EX|2

λ2 VarX
=

1

λ2
.

So X = EX +O(λVar1/2 X) with probability 1−O
(

1
λ2

)
.

The quantity σ := Var1/2X is called the standard deviation of X.

This works good when variation is small with respect to expectation.

Mikhail Gabdullin The probabilistic method



Example 11: ω(n)

Let n be chosen uniformly at random from [1, x] ∩ Z and de�ne ω(n) =
∑
p|n 1 to be

the number of prime divisors of n. Then (x is a large positive integer)

Eω(n) =
1

x

∑
n6x

∑
p|n

1 =
1

x

∑
p6x

∑
n6x,p|n

1 =
1

x

∑
p6x

[
x

p

]
=

1

x

∑
p6x

(
x

p
−
{
x

p

})
=
∑
p6x

1

p
+O(1) = log log x+O(1).

It is not hard to show that

Varω(n) = O(log log x).

Let f(x)→∞ as x→∞. Then by Chebyshev's inequality we have

P
(
|ω(n)− log log x| > f(x)(log log x)1/2

)
�

1

f(x)2
= o(1), x→∞.

So if we take randomly n 6 x, then ω(n) ∼ log log x almost surely (with probability
1− o(1), x→∞). In particular, for any �xed ε > 0

P ((1− ε) log log x 6 ω(n) 6 (1 + ε) log log x) = 1−O
(

1

ε2 log log x

)
.
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Corollary: Erd�os's Multiplication Table Problem

Let M(N) be the number of distinct integers in an N ×N multiplication table. Is it
true that M(N) = o(N2) as N →∞ ?

Yeap. Indeed, almost all numbers i, j ∈ {1, ..., N} have approximately log logN prime
factors (in fact, even if we count them with multiplicity). Then almost all products ij
have approximately 2 log logN prime factors counted with multiplicity. But there are

only O
(

N2

log logN

)
such numbers up to N2.

Theorem (Erd�os, 1960)

We have

M(N) =
N2

(logN)δ+o(1)
,

where δ := 1− 1+log log 2
log 2

= 0.086....

Theorem (Ford, 2008)

We have

M(N) �
N2

(logN)δ(log logN)3/2
.
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Example 12: ω(p− 1)

What about standard values of ω(p− 1), where p is prime?

Let a prime p 6 x be chosen uniformly at random from [1, x] ∩ P. Using an advanced
result from ANT (the so-called Bombieri-Vinogradov theorem) it is easy to deduce that

Eω(p− 1) = log log x+O(1)

and
Varω(p− 1) = O(log log x)

So again by Chebyshev's inequality ω(p− 1) ∼ log log x almost surely.

So in some sense the numbers p− 1 for primes p 6 x behave like random numbers
n 6 x.
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Example 13: τ(n)

Sometimes the second method does not work (and this is ok).

Let τ(n) =
∑
d|n 1 be the divisor function. Then

Eτ(n) =
1

x

∑
n6x

∑
d|n

1 =
1

x

∑
d6x

∑
n6x,d|n

1 =
1

x

∑
d6x

[x
d

]
=
∑
d6x

1

d
+O(1) = log x+O(1).

One can prove that

Var τ(n) =
1

6ζ(2)
log3 x+O(log2 x).

So the standard deviation is of order log3/2 x which is much larger than Eτ(n) and
the second moment method fails.

Nevertheless, we do have asymptotics almost surely here.

Theorem (a folklore one)

For any ε > 0 we have

P
(

(log x)(log 2−ε) 6 τ(n) 6 (log x)(log 2+ε)
)

= 1− o(1), x→∞.
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Example 14: Good intersection with a hyperplane

Let a = (a1, ..., ad), b = (b1, ..., bd) ∈ Zdp. De�ne

ab = (a, b) = a1b1 + ...+ adbd ∈ Zp.

De�ne a hyperplane L ⊆ Zdp to be any set of the form

L = Lη,u = {x ∈ Zdp : xη = u},

where η ∈ Zdp, η 6= 0, and u ∈ Zp.

Lemma

Let A ⊂ Zdp and |A| = δpd. Then there exists a hyperplane L ⊂ Zdp such that

|A ∩ L| = pd−1(δ + θδ1/2p−(d−1)/2),

where |θ| 6 1.

Proof. Let us choose a hyperplane (that is, a pair (η, u) ∈ Zdp × Zp) uniformly at
random and consider the random variable

ξ = |A ∩ Lη,u| =
∑
x∈A

1(xη = u)
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Example 14: Good intersection with a hyperplane

Let r = pd − 1. Then

Eξ =
1

rp

∑
η∈Zd

p\{0}

∑
u∈Zp

|A ∩ Lη,u| =
∑
x∈A

1(xη = u) =

1

rp

∑
x∈A

∑
η∈Zd

p\{0}

∑
u∈Zp

1(xη = u) =
1

rp

∑
x∈A

∑
η∈Zd

p\{0}

1 =
|A|
p

It is not hard to prove that
Var ξ < δpd−1.

Then for some λ > 1

σ = Var1/2 ξ =
δpd−1

λ

Thus by Chebyshev's inequality

P(|ξ − Eξ| > δ1/2p(d−1)/2) = P(|ξ − Eξ| > λσ) 6
1

λ2
< 1,

and hence there exists a hyperplane Lη,u such that

ξ = |A ∩ Lη,u| = δpd−1 + θδ1/2p(d−1)/2

for some θ < 1. The claims follows.
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Example 15: The exponential moment method

Consider again random complete directed subgraph (tournament) G = (V,E) with
|V | = N = 107.

For a vertex v ∈ V set dv := #{u ∈ V : (v, u) ∈ E} (scores of a). Fix v and consider
the random variable

Xv = dv − (N − 1− dv) = 2dv −N + 1

(the number of wins minus the number of losses). Then dv = 1
2

(N − 1 +Xv). Note
that

X =
∑
u6=v

εu,

where P(εu = 1) = P(εu = −1) = 1/2 and εu are jointly independent. Then

EXv = 0

and
VarXv =

∑
u6=v

Var εu = N − 1.

Also for this case we have a great improvement of Chebyshev's inequality

Theorem (Cherno�'s inequality)

Suppose that random variables X1, ..., Xn are jointly independent such that EXi = 0
and |EXi| 6 1. De�ne X = X1 + ...+Xn and σ := Var1/2 X. Then for any λ > 0

P (|X − EX| > λσ) 6 2 max
(
e−λ

2/4, e−λσ/2
)
.
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EXv = 0

and
VarXv =

∑
u6=v

Var εu = N − 1.

Also for this case we have a great improvement of Chebyshev's inequality

Theorem (Cherno�'s inequality)

Suppose that random variables X1, ..., Xn are jointly independent such that EXi = 0
and |EXi| 6 1. De�ne X = X1 + ...+Xn and σ := Var1/2 X. Then for any λ > 0

P (|X − EX| > λσ) 6 2 max
(
e−λ

2/4, e−λσ/2
)
.
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Example 15: The exponential moment method

In our case we have (say)

P
(
|Xv | > 20(N logN)1/2

)
6 2e−100 logN = 2N−100.

So |Xv | 6 20(N logN)1/2 with extremely high probability 1− 2N−100.

Recall dv = 1
2

(N − 1 +Xv); then

Edv =
N − 1

2

and it follows that

P
(
|dv − (N − 1)/2| > 20(N logN)1/2

)
6 2N−100

and
P
(
∃v : |dv − (N − 1)/2| > 20(N logN)1/2

)
6 2N−99

So in a random tournament all players are almost equal with extremely high probability.

It is not the real life.
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Again the �rst moment method: a problem

Consider the function f : [0, 1]→ R,

f(x) =

{
1000, if 0 6 x 6 1/100;

0, otherwise.

Suppose we do not know what f is but want to prove that it has large values. Suppose
we can compute

Ef =

1∫
0

f(x)dx = 10.

Then by the �rst moment method we get that there exists x such that f(x) > 10. Not
so impressive, right?

How to �x this?
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The re�ned �rst moment method

Let g(x) be any non-negative function on [0, 1] such that
∫ 1
0 g(x)dx = 1 and de�ne

Ef =

1∫
0

f(x)g(x)dx.

Then
1∫

0

(f(x)− Ef) g(x)dx =

1∫
0

f(x)g(x)dx− Ef = 0

and hence there exists x with f(x) > Ef . We are not forced to take g(x) ≡ 1 at all!
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The re�ned �rst moment method

Let f be as above and

g(x) =

{
2, if 0 6 x 6 1/2;

0, otherwise.

Then Ef = 20 and hence max f(x) > 20 .

Ok, let

g(x) =

{
10, if 0 6 x 6 1/10;

0, otherwise.

Then max f(x) > Ef = 100.

Finally, let

g(x) =

{
100, if 0 6 x 6 1/100;

0, otherwise.

Then max f(x) > Ef = 1000 and it is the best possible.

The moral 1: our measure needs to be concentrated on the set of large values of f .

The moral 2: we need to have a good guess for what this set is!
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Example 16: Large values of ζ(s)

Suppose we want to study large values of the Riemann zeta-function ζ(s) on the
critical line s = 1/2 + it. Here the �rst moment method works normally. It gives us (a
result of Hardy-Littlewood)

1

T

T∫
0

|ζ(1/2 + it)|2dt ∼ log T

and hence
max
t∈[0,T ]

|ζ(1/2 + it)| > (1 + o(1)) log1/2 T, T →∞,

or (a result of Ingham)

1

T

T∫
0

|ζ(1/2 + it)|4dt ∼
1

2π2
log4 T

and hence
max
t∈[0,T ]

|ζ(1/2 + it)| � log T.

But no other moment are known.
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Example 17: Large values of ζ(s)

Fix 1/2 < σ < 1. To estimate from below maxT6t62T |ζ(σ+ it)| people use measures

ϕ(t) = 1
J

∣∣∣∏p6x

(
1 +

lp
pit

)∣∣∣2 (x is a parameter), where J =
∫ 2T
T ϕ(t)dt.

Then using the �rst moment method it can be shown that there exists c = c(σ) > 0
such that

ζ(σ + it) = Ω

(
exp

(
c

(log |t|)1−σ

log log |t|

))
(for this we set lp = 1 for all p) and

ζ−1(σ + it) = Ω

(
exp

(
c

(log |t|)1−σ

log log |t|

))
.

(for this we set lp = −1 for all p).

Here F (t) = Ω(G(t)) means that there exist an absolute constant C > 0 and a
sequence tk such that tk →∞ and

|F (tk)| > CG(tk).
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