Программа курса

ВСПЛЕСКИ И ИХ ПРИМЕНЕНИЕ

Автор – д. ф.-м. н., профессор Н. И. Черных

ЦЕЛЬ КУРСА

Цель курса — изложить основы нового направления в теории функций — теории ортогональных и биортогональных базисов всплесков, обеспечив слушателям возможность дальнейшего самостоятельного изучения периодической литературы по этой тематике. Показать перспективность использования аппарата теории всплесков в гармоническом анализе, в задачах представления, аппроксимации и восстановления функций, в задачах обработки и фильтрации сигналов, кодирования изображений и других прикладных задачах. Сделать обзор по так называемым всплескам второго поколения, по связи с «уточняющими алгоритмами», применяемыми в компьютерном дизайне для численной аппроксимации почти интерполяционными функциями.

СОДЕРЖАНИЕ КУРСА

Предыстория базисов всплесков. Формальное определение (описание) базисов всплесков. Осмысление интегральных преобразований, встречавшихся в работах Лузина, Кальдерона и др. с позиции основной идей базисов всплесков. Интерпретация системы функций Хаара на вещественной оси с этих же позиций.

Преобразования Фурье в $L_2(\mathbb{R})$. Определения и основные свойства (обзорно). Непрерывные всплески, прямое и обратное всплеск преобразование.

Базисы Рисса. Определение Н. К. Бари. Эквивалентные определения. Основные свойства.

Кратно-масштабные разложения пространства $L_2(\mathbb{R})$ (мультиразрешающая аппроксимация, мультиразрешающий анализ $L_2(\mathbb{R})$). Аксиоматика. Определение мультиразрешающей аппроксимации системой аксиом (свойств) как последовательности вложенных подпространств V_j ($j \in \mathbb{Z}$) пространства $L_2(\mathbb{R})$. Эквивалентность трех формулировок пятой аксиомы мультиразрешающей аппроксимации: в терминах изоморфизма J пространств V_0 и $\ell_2(\mathbb{Z})$, перестановочного с операторами целочисленного сдвига, в терминах базиса Рисса, в терминах ортогонального базиса вида $\{\varphi(x+k)\}_{\{k\in \mathbb{Z}^m\}}$ пространства V_0 . Конструкция базиса Рисса пространства V_0 на базе изоморфизма J.

Критерий ортонормальности системы $\{\varphi(x+k)\}_{\{k\in {\bf Z}^m\}}$ в терминах преобразования Фурье функции $\varphi(x)$. Конструкция ортогонального базиса всплесков пространства V_0 на основе его базиса Рисса. Базисы всплесков пространств V_j , $j\in {\bf Z}$.

Примеры мультиразрешающих аппроксимаций. Регулярные мультиразрешающие аппроксимации. Мультиразрешающие аппроксимации $L_2(\mathbb{R})$, определяемые подпространством V_0 с ортогональным базисом всплесков (или базисом Рисса), преобразование Фурье порождающей функции которого имеет компактный носитель. Мультиразрешающие аппроксимации пространства $L_2(\mathbb{R})$ на основе полиномиальных сплайнов.

Ортогональное дополнение W_0 пространства V_0 в V_1 и его ортонормированный базис всплесков. Характеризация пространства V_0 в терминах преобразования Фурье его

элементов. Характеризация пространства W_0 в тех же терминах. Конструкция ортогонального базиса всплесков пространства W_0 на основе базисов всплесков пространств V_0 и V_1 . Примеры: базисы всплесков пространств V_0 с компактными носителями их преобразований Фурье; базисы Баттла – Лемарье, Стромберга и Чуи.

Базисы всплесков пространства $L_2(\mathbb{R})$. Разложение пространства $L_2(\mathbb{R})$ в прямую сумму ортогональных подпространств W_j ($W_j = V_j \div V_{j-1}$). Базисы всплесков пространств W_j и всего $L_2(\mathbb{R})$. Конкретные классы базисов: Мейера, Чуи, Добеши.

Аппроксимативные свойства регулярных базисов всплесков в $L_2(\mathbb{R})$. Теорема Малата. Оценки погрешности аппроксимации функций частичными суммами рядов Фурье по базисам всплесков с компактным носителем. Случай нескольких переменных (обзорно).

Конструкция базисов всплесков в $L_2(\mathbb{R}^m)$ по методу тензорного произведения одномерных базисов всплесков.

Базисы всплесков функциональных пространств $L_2(\mathbb{R}^m)$, $C(\mathbb{R}^m)$, $H_p(\mathbb{R}^m)$ и пространств Бесова.

Периодические базисы всплесков. Периодизация функций на основе сумматорной теоремы Пуассона. Периодические базисы всплесков Мейера и Осколкова – Оффина в пространствах $L_n(0,2\pi)$. Их аппроксимативные свойства.

Базисы всплесков в гармоническом анализе и прикладных задачах.

Биортогональные системы масштабирующих функций и всплесков. Нестационарные всплески. Всплески второго поколения (по Свелдену).

ЛИТЕРАТУРА

- 1. Чуи Ч. К. Введение в вэйвлеты. М.: Мир, 2001. 412 с.
- 2. Добеши И. Десять лекций по вейвлетам. М.; Ижевск: РХД, 2004. 464 с.
- 3. Meyer Y. Ondolettes. Paris: Herman, 1990. 215 c.
- 4. Guy D. Waveletls and Singular Integrals on Curves and Surfaces. Springer-Verlag. 109 c.
- 5. Новиков И. Я., Стечкин С. Б. Основные свойства всплесков. // Фундаментальная и прикладная математика. 1987. Т. 3, № 4. С.999–1028.
- 6. Malat S. Multiresolution approximation and wavelet orthonormal bases of $L_2(\mathbb{R})$ // Transactions A.M.S. 315 (1989), P.69–87.
- 7. Offin D., Oskolkov K. A Note on Orthonormal Polynomial Bases and Wavelets // Constructive Approximation, 9 (1993). P.319–325.
- 8. Малла С. Вэйвлеты в обработке сигналов. М.: Мир, 2005. 671 с.
- 9. Новиков И. Я., Протасов В. Ю., Скопина М. А. Теория всплесков. М., ФИЗМАТЛИТ, 2005. 616 с.
- 10. Петухов П. А. Введение в теорию базисов всплесков. СПбГТУ, 1999. 132 с.

Смоленцев Н.К. Основы теории вейвлетов. Вейвлеты в MATLAB. М.: ДМК Пресс, 2008. 304с.